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1. Introduction

Klebanov and his collaborators have demonstrated [1 – 4] that type IIB string theory on

AdS5 × T 1,1 is holographically dual to a cascading gauge theory. Three years later it was

conjectured that there are more cascading gauge theories dual to the product of AdS5 and

an infinite family of Sasaki-Einstein manifolds La,b,c that generalise T 1,1 [5 – 18]. However

these cases are complicated by the fact that multiple gauge couplings become strong si-

multaneously, and so one does not quite know how to perform the duality, for example it

may be that for a fixed La,b,c there exist a network of walls separating domains of initial

values of gauge couplings which exhibit different cascades [19 – 21]. We will argue that only

one such pattern of cascades appears to be consistent with RR charge conservation in the

dual gravity description in the case of compactifications on AdS5 × La,b,c with a, b, c and

d ≡ a + b − c are relatively prime and also in the cases with c = d, in which La,b,c is a

Y p,q [12].

The manifolds La,b,c are similar to T 1,1, the base of the conifold. Topologically they

are identical, if a, b, c and d are relatively prime then La,b,c is diffeomorphic to T 1,1 and

both are diffeomorphic to S2 × S3 [22, 1]. An explicit diffeomorphism relating T 1,1 to

S2 × S3 was presented in [23]. However the metrics on T 1,1 and La,b,c are not equivalent

and as a result the world-volume gauge symmetries of the gauge theories dual to the

AdS5 × T 1,1 and AdS5 × La,b,c backgrounds are very different. The gauge theories dual

to La,b,c compactifications are far more complicated and their vacuum structures are not

understood, which is an obstruction to the analysis of their cascades of Seiberg dualities.

While it remains quite difficult to determine the vacuum structure of these theories,

we will argue that the topology (in fact just the homology) of La,b,c along with the fluxes

present in the compactification already places a strong constraint on the dualities allowed

in the dual gauge theory. This constraint arises by imposing that the dualities arise from

processes that conserve RR charge, generalising the NS5-brane nucleation in the T 1,1 case
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which was presented in [24 – 26]. More specifically, consider T 1,1, which we recall again is

diffeomorphic to S2 × S3, with M units of RR 3-form flux F3

∫

S3

F3 = M. (1.1)

The dual gauge theory, which intuitively lives on N D3-branes that are put at points on

La,b,c, has a SU(N)×SU(N +M) gauge symmetry. Now consider an NS5-brane that wraps

the 4-dimensional horizon and also wraps a contractible 2-sphere at fixed latitude θ in the

S3 of T 1,1. There is a family of such configurations, parameterised by the latitude θ. The

central result of [24, 25] is that the parameter θ parameterises the re-normalisation group

direction, and in particular as the gauge theory flows into the IR the 2-sphere nucleates

at the south pole of the S3, moves up to the equator and then shrinks down to nothing

again at the north pole. We will refer to this process as a MMS instanton, as it was first

described in [27]. A somewhat simplified version of this system was analysed classically

in [28].

When the NS5-brane shrinks down to nothing there are M (anti) D3-branes left. One

can see this immediately using RR charge conservation. The NS5-brane sources H flux, and

by Gauss’ law the MMS instanton increases the H flux by one Dirac unit. The total RR

3-charge is equal to the sum of the brane contribution, equal to the number of D3-branes,

plus a bulk contribution

QRR = ND3 +

∫

H ∧ F3. (1.2)

When H increases by a single unit, this wedge product increases by M units, as one finds for

example by using Poincaré duality to express the integral of ∆H ∧F3 as the integral (1.1)

of F3 over the S3 swept out by the NS5. The total RR 3-charge must be conserved, and

so if the bulk charge increases by M units then the brane charge must decrease by M

units, meaning that there are M less D3-branes, leaving N − M . The new gauge group is

then SU(N − M) × SU(N − M + M) = SU(N − M) × SU(N). Alternately one may use

the NS5-brane worldvolume theory to see that the instanton leaves M anti-branes. The

worldvolume Wess-Zumino term

SNS5 ⊃
∫

C2 ∧ C4 (1.3)

implies that C2 is an electric source for the RR 4-form connection C4, in other words, it

carries D3-brane charge. Using (1.1) and Stoke’s theorem one finds that the integral of

C2 over the 2-sphere wrapped by the NS5-brane decreases by M units during the MMS

instanton, and so the D3-brane charge decreases by M units, leaving M anti-branes when

the NS5 finally collapses.

In the T 1,1 case, only one simple gauge group is strongly coupled in the IR, which

allows one to treat the other as a global symmetry and so find the Seiberg duality directly

in the field theory, choosing the root of the baryonic branch in the sense of [29] and thus

demonstrating that the duality is not only allowed by RR charge conservation but actually

provides a weakly coupled description of the strongly coupled IR gauge theory. In general
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it is not certain that an allowed transition provides another description, and even if it does

then there is no reason to believe that such a description should always be weakly coupled.

We will not be so ambitious.

The MMS instanton is easily generalised to La,b,c, without recourse to the details of

the La,b,c gauge theory. One need only know that La,b,c is diffeomorphic to S2 × S3 and

that (1.1) still holds, which is a consequence of the fact that the D5-branes wrap the S2

which has intersection number one with the S3. The above argument then implies that

D3-brane charge is preserved modulo M , and so cascades are allowed which change the

number N of D3-branes by an integral multiple of M . In particular this only leaves room

for a single family of cascades, and so appears to exclude duality walls for example. We will

see that the allowed cascades all preserve the form of the corresponding quiver.1 One may

object that these cascades only describe baryonic vacua, and that RR charge must also be

preserved in the dual descriptions of the mesonic vacua which correspond to distinct dual

theories, however these vacua are dual to topologically distinct compactifications and so

escape.

In section 2 we review Seiberg dualities in cascading quivers by considering the specific

example of the Y 2,1 gauge theory dual. Then in section 3 we will demonstrate that there

exists a 3-form on La,b,c that satisfies (1.1) and is (2, 1), as is required by supersymmetry [31,

32]. We then describe the generalization of the construction of the NS5-brane on the

deformed conifold in ref. [24] to the case of a general Labc compactification. We conclude

in section 4 with comments on the generalisation to compactifications on other spaces and

D7-brane processes, and possible resolutions to the apparent contradiction with the duality

wall literature.

2. Seiberg duality in quiver gauge theories

The superconformal quiver gauge theories dual to Y p,q spaces were first constructed in [7]

generalising the specific case of Y 2,1 [33, 34], and this was later further generalised to

include the dual quivers for all La,b,c spaces [10, 11, 13]. Cascading Seiberg dualities in

these field theories were discussed by many authors, and the supergravity duals of these

cascades have also been considered [35, 36, 14, 37].

The discussion of cascades in these gauge theories is more involved than in the familiar

case of the conifold, because in the latter the quiver diagram has only two nodes. One

of these two nodes is strongly coupled in the IR (the one-loop beta function is positive),

while the other one is weakly coupled. So the choice of the node on which one should

Seiberg dualize is clear in the gauge theory picture. Indeed, after the duality, we end up

with the same node structure that we started with, but with shifted ranks for the gauge

groups, and the process continues all the way to the base of the cascade, where we lose

one of the nodes (at least when N is a multiple of M) and the cascading comes to an end,

resulting in chiral symmetry breaking [4]. This ties in well with the picture presented by

the Klebanov-Strassler supergravity solution dual to the gauge theory: there, one finds a

1This ties in well with the expectations from the dimer models [30, 11].
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Figure 1: The quiver diagram for Y 2,1 theory.

radial dependence of the 5-form flux, which results in a logarithmic running of the effective

number of D3-branes.

But in the case of the La,b,c quivers, the situation is much less clear, and the choice

of the cascade step could depend, in principle, on which node one chooses to dualize on.

We will explain this in more detail by using the specific example of the Y 2,1 quiver in

the reminder of this section. One purpose of this paper is to present a dual geometrical

argument that gives us a natural way to choose the “right” cascade, dual to the supergravity

description.

Let us now turn to the explicit example of Y 2,1. The quiver diagram for the theory

is shown in figure 1. The diagram represents an N = 1 gauge theory, where each node

corresponds to a gauge group, and each arrow is a chiral bi-fundamental superfield, denoted

by Uα, V α, Y and Z in the figure, α = 1, 2. If the gravity description corresponds to the

simplest case, namely that of N D3-branes probing the apex of the cone over Y 2,1, then

the worldvolume theory on the D3-branes is superconformal, and all the gauge groups are

SU(N). To trigger the RG-flow that results in the cascade, we add M D5-branes and break

the conformal invariance. It turns out that this changes the gauge groups to

SU(N)1 × SU(N + M)3 × SU(N + 2M)4 × SU(N + 3M)2, (2.1)

where the subscripts serve as a book-keeping device to keep track of the node associated to

the corresponding gauge group in our quiver diagram. The superpotential for the theory
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is the sum of all the gauge invariant cubic and quartic operators in the fields listed above.

For the case at hand,

W ∼ ǫαβUα
41Y13V

β
34 + ǫαβV α

34Y42U
β
23 + ǫαβUα

23Y34U
β
41Z12. (2.2)

The one-loop NSVZ beta function for the running gauge couplings for the various nodes

can be computed from the usual formula,

βi ≡
d(8π2/g2

i )

d log µ
=

3T (G) − ∑

i T (ri)(1 − 2γi)

1 − g2

i

8π2 T (G)
. (2.3)

Following Klebanov-Strassler and ignoring the denominator, and using the relation γi =
3
2Ri−1 relating anomalous dimensions and R-charges, we find the following beta functions

for the various nodes:

β1 = 3M +
3M

2

[

6(RU − 1) + 2(RY − 1) + 4(RZ − 1)
]

β2 = 12M +
3M

2

[

4(RU − 1) + 3(RY − 1) + (RZ − 1)
]

β3 = 6M +
3M

2

[

6(RV − 1) + 8(RU − 1) + 4(RY − 1)
]

β4 = 9M +
3M

2

[

4(RV − 1) + 2(RU − 1) + 6(RY − 1)
]

.

For each node, the gauge groups on the other nodes act as effective flavours. In the

calculation, we have used the fact that RU +RV +RY = 2 and 2RU +RY +RZ = 2, which

are determined from the conditions for conformality when there are no D5-branes.

We can look up the R-charges of the various fields in [6], and the result is (for the

specific case of Y 2,1):

RY =
(−9 + 3

√
13)

3
, RZ =

(−17 + 5
√

13)

3
, RU =

4(4 −
√

13)

3
, RV =

(−1 +
√

13)

3
. (2.4)

From these explicit values, it follows immediately that nodes 2 and 4 are both strongly

coupled in the infrared, unlike the case of the conifold where there was only one gauge

coupling that blew up as we flowed down along the RG flow. So here the choice of the node

to Seiberg dualize is in general initial condition dependent. But as observed in [35], if we

choose to dualize on the node with the largest number of colours (in our case, this would

be node 2), we end up with a quiver that is self-similar to the original one, and the usual

logic of the cascade still goes through. This choice has a natural interpretation in terms of

the D-brane decays that are allowed by K-theory in the dual geometry, it relates D-branes

wrapping distinct homology classes that represent the same twisted K-theory class, as in

[25, 38].

It is also important to note that with this choice of the node, the form of the super-

potential is also unchanged after Seiberg duality, as we will now quickly demonstrate. To

Seiberg dualize around node 2, we introduce meson fields Mα
43 ≡ Y42U

α
23 and Nα

13 ≡ Z12U
α
23

corresponding to the branches 1-2-3 and 4-2-3 that pass through node 2, and dual quarks

q̃24, q̃21, q
β
32 corresponding to the legs that start at node 2. The superpotential for the dual

– 5 –



J
H
E
P
0
8
(
2
0
0
7
)
0
2
0

theory with these fields will have the pieces (2.2) written in terms of the new fields, plus

the pieces that couple the mesons and the dual quarks as dictated by the recipe for Seiberg

duality:

Wtemp ∼ ǫαβUα
41Y13V

β
34 + ǫαβV α

34M
β
43 + ǫαβUα

41N
β
13Y34 + ǫαβ q̃24M

α
43q

β
32 + ǫαβ q̃21N

α
13q

β
32. (2.5)

The V M -term is a mass term, and since we are after the IR physics, we integrate it out

by setting

∂W

∂V α
34

= 0 =⇒ Uα
41Y13 = Mα

43,

∂W

∂Mβ
43

= 0 =⇒ V α
34 = qα

32q̃24.

The superpotential now looks like

Wnew ∼ ǫαβUα
41N

β
13Y34 + ǫαβ q̃21N

α
13q

β
32 + ǫαβUα

41Y13q
β
32q̃24, (2.6)

which (after some identifications) is of the same form as (2.2).

The crucial thing to notice is that this works only if we choose to dualize on node 2. If

we choose to dualize on node 4 (which we have seen is also strongly coupled), the resulting

quiver (and the superpotential) is not of the same form as the one that we started with. It

is straightforward to see this by Seiberg dualizing on node 4, the gauge groups become

SU(N)1 × SU(N + M)3 × SU(2N + M)4 × SU(N + 3M)2, (2.7)

which is inconsistent with the original structure of the quiver. So the choice of the node is

crucial for the cascade to work.

3. The cascade step from the L
a,b,c geometry

The goal of this section is to demonstrate that, as in the conifold case, for an arbitrary

La,b,c with co-prime2 a, b, c and d ≡ a+ b− c there is a 3-cycle Σ satisfying (1.1) for M = 1

(and therefore for any M):
∫

Σ
F3 = 1. (3.1)

We will then use this result in the construction of the NS5-brane instanton.

We will pursue the following strategy. A Calabi-Yau cone over La,b,c is actually a

Kähler quotient C
4//U(1), namely a gauged linear σ-model (GLSM) with U(1) charges

(a, b,−c,−d) [33]. Let us denote the C
4 coordinates by zi with i = 1, . . . , 4. For each i

there is a 3-submanifold Σi in La,b,c defined by zi = 0. These 3-cycles are calibrated and

therefore supersymmetric, while their volumes correspond to the R-charges of various fields

2For non co-prime (a, b, c, d) the corresponding La,b,c space is singular and degrees of freedom at the

singularity may become important, and so it no longer suffices to consider the topology alone. In that case,

perhaps the equivariant homology might determine the cascade structure.
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in the dual gauge theory.3 We will explicitly show that for an arbitrary La,b,c there are two

3-cycles Σ3 and Σ4 satisfying:
∫

Σ3

F3 = c and

∫

Σ4

F3 = d. (3.2)

Since c and d are co-prime the Euclidean equation nc + md = 1 always has a solution.

Finally, using the integers m and n we can construct a linear combination of Σ3 and Σ4

satisfying (3.1). As we have already mentioned, for c = d the La,b,c geometry reduces to

Y p,q and we refer the reader to [35] for the detailed calculation in this case. We will briefly

address this case at the end of the section.

The La,b,c geometry can be briefly summarised as follows. The Sasaki-Einstein metric

is given by:

ds2
5 = ds2

4 + (dψ
′

+ A)2, (3.3)

where the 4-dimensional metric is:4

ds2
4 =

(η − ξ)

2F (ξ)
dξ2 +

2F (ξ)

(η − ξ)
(dΦ + ηdΨ)2 +

(η − ξ)

2G(η)
dη2 +

2G(η)

(η − ξ)
(dΦ + ξdΨ)2, (3.4)

with

F (ξ) = 2ξ(α − ξ)(α − β − ξ) and G(η) = −2η(α − η)(α − β − η) − 2 (3.5)

for constant α and β, and the 1-form A is:

A = −1

2
((η + ξ)dΦ + ηξdΨ) . (3.6)

The coordinates η and ξ vary between two adjacent roots of the polynomials F (ξ) and

G(η) respectively. In particular, 0 ≤ ξ ≤ α − β. The angular coordinates Φ and Ψ are

defined by:

Φ ≡ ψ

2β
and Ψ ≡ 1

α − β

(

φ

2α
− ψ

2β

)

, (3.7)

where both φ and ψ are 2π-periodic. The regularity of the entire 5-dimensional metric

imposes a complicated relation between the constants α and β.

Now let us address the RR 3-form F3. For the 10d solution to be supersymmetric,

the form Ω ≡ H3 − iF3 has to be (2, 1) [31, 32]. Moreover, on a Calabi-Yau cone over a

Sasaki-Einstein space, the (2, 1)-form is necessarily of the form:

Ω(2,1) = K

(

dr

r
+ i(dψ

′

+ A)

)

∧ ω(1,1), (3.8)

where K is a constant and ω(1,1) is a (1, 1) Kähler form on the 4-dimensional base of the

5-dimensional SE metric (3.3). For La,b,c it is:

ω(1,1) =
1

(η − ξ)2
(d(η − ξ) ∧ dΦ + (ηdξ − ξdη) ∧ dΨ) . (3.9)

3See [39] for the relation between the 3-cycles and mesonic operators in the gauge theory.
4Here we adopt the notation of [14].
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We will be interested in the 3-cycles Σ3 and Σ4, which correspond to (ξ = 0, φ = const)

and (ξ = α − β, ψ = const) respectively. The integration over these cycles yields:

∫

Σ3

F3 = K
π

β

(

1

η2
− 1

η1

)

∆ψ
′

and

∫

Σ4

F3 = K
π

α

(

1

η2 − (α − β)
− 1

η1 − (α − β)

)

∆ψ
′

,

(3.10)

where ∆ψ
′

is the period of ψ
′

and η1,2 are the two adjacent roots of G(η). Remarkably,

these roots are related to the parameters α and β by:5

α(η2 − (α − β))(η1 − (α − β))

βη2η1
=

c

d
. (3.11)

Thus setting

K =
β

π∆ψ
′

η1η2

η2 − η1
c (3.12)

we arrive at (3.2), which in turn leads to (3.1) as we have already explained above. Re-

markably, we could have considered the cycles Σ1 and Σ2 located at η = η1 and η = η2

respectively.

Finally, let us briefly review the c = d case. In other words we have a Y p,q space with

p ≡ c and q ≡ c−a = b− c. Since the U(1) factor in the isometry group is now enlarged to

SU(2) there are only three independent 3-cycles Σ1, Σ2 and Σ3. These supersymmetric 3-

cycles where investigated in [35]. It was found that for a certain value of the normalisation

constant one obtains:
∫

Σ1

F3 = p − q

∫

Σ2

F3 = p + q and

∫

Σ3

F3 = p, (3.13)

which just reproduces our results for c = d. Furthermore, since p and p − q (alternatively

p and p + q) are co-prime we can use Σ1 and Σ3 to construct the 3-cycle Σ satisfying (3.1).

This completes the proof of the main claim of the paper.

Now that we have established the existence of a 3-cycle supporting M units of flux, we

may construct the NS5-brane instanton along the lines of the constructions in ref. [24]. In

that paper, the authors construct the NS5-brane from two distinct points of view. First,

they construct it from the point of view of the worldvolume theory on a stack of p anti-

D3-branes, in the approximation that p ≤≤ M , which allows them to consider a flat space

limit of the geometry, which exists as the geometry is nonsingular. In our case we may

consider the nucleation of p anti-D3’s and p D3’s with any p, and so in particular we

may consider a p which is much smaller than M and then use the same approximation.

In this approximation they use S-duality to argue for the existence of a Myers dielectric

term proportional to the dual B-field, which inflates the anti D3-branes into a spherical

NS5-brane. They calculate the radius of the NS5-brane which minimizes the energy of the

system, and then describe the MMS instanton as a tunneling process to another locally

minimum energy solution. This argument is identical in our case.

Second, they consider the worldvolume theory of the spherical NS5-brane. Here they

approximate the spacetime to be the product of S3 and Minkowski space. The S3 is

5In deriving this formula, we used (3.33) of [11] with xi = α − ηi and the explicit form of G(η) in (3.5).
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homologically nontrivial in the deformed conifold. However in general no such deformation

exists for an Labc, and so the argument is more subtle in this case. Perhaps one may use a

contractible S3 which is far away from the singularity but links it.

4. Conclusions

La,b,c, at least when a, b, c and d = a + b − c are relatively prime, is non-singular and

diffeomorphic to S2 × S3. In this note we have argued that this fact, together with RR

charge conservation, is sufficient to restrict the form of possible cascades. We considered

cascades in which each duality corresponds to an NS5-brane that sweeps out the 3-sphere,

and argued that the 3-form RR flux on the 3-sphere implies that such a process necessarily

destroys a number of D3-branes equal to the number of D5-branes, corresponding to a

Seiberg duality in the gauge theory. We also checked that for any number of D5-branes

there exists a 3-form representing the corresponding de Rham cohomology class which is

(2, 1), as is required by supersymmetry.

This result applies more generally. Only the integrals of the various forms over the

cycles were important, and so it suffices to consider an integral sublattice of the de Rham

cohomology, which in this case is isomorphic to the integral cohomology.6 In particular,

cascades caused by 5-branes sweeping out 3-cycles appear to never change the form of the

quiver, because the 5-branes violate D3-brane charge which is classified by the zeroth co-

homology of the compact space, which is always one-dimensional as the space is connected.

Thus each step in the cascade corresponds to a change in a single parameter. If there are

multiple 3-cycles, then the minimal cascade is simply the greatest common divisor of the

number of D3-branes created by 5-branes wrapping the various 3-cycles. Exotic cascades

may be possible if one also considers processes in which D7-branes nucleate, for example a

D7-brane sweeping out a 5-cycle supporting a nontrivial H-flux will violate the D5-brane

charge wrapping the 2-cycle dual to the H-flux in the 5-cycle. In practice many of these

examples remain out of reach as they require an understanding of S-duality in the presence

of D7-branes.

The self-similarity of these cascades appears to be in contradiction with the duality

walls that are predicted from a purely gauge-theoretic point of view. It may be that

this supergravity analysis is too naive, that one must consider also the physics at the tip

of the cone, where many different cycles exists and may come in and out of existence via

geometric transitions, however branes wrapping such cycles tend to lead to chiral anomalies

in the gauge theory. Another possibility is that D7-brane processes must be considered in

such cases. However, it may also be that in the gauge theory analysis, which relies on an

analogy with a theory with a single simple gauge group, approximating the others to be

global symmetries in the IR despite the sign of their beta functions, is invalid.

6In general the integral cohomology may also contain torsion subgroups, which may lead to interesting

variations of the dual gauge theories corresponding to discrete torsion fluxes in the string theory compact-

ification.
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